Vanilloid Receptor–Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor

نویسندگان

  • Wolfgang Liedtke
  • Yong Choe
  • Marc A. Martí-Renom
  • Andrea M. Bell
  • Charlotte S. Denis
  • AndrejŠali
  • A. J. Hudspeth
  • Jeffrey M. Friedman
  • Stefan Heller
چکیده

The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nervous system, the channel is expressed in neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of osmotically responsive cationic channel TRPV4 in the endolymphatic sac

The immunohistochemical expression pattern and the physiological role of transient receptor potential vanilloid (TRPV) 4 in the endolymphatic sac were investigated. TRPV4 was expressed predominantly in the apical membrane of the mitochondria-rich cells and cell volume regulation by TRPV4 was observed in a tissue culture of the rat endolymphatic sac. TRPV4 was also present in the endolymphatic s...

متن کامل

Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans.

All animals detect osmotic and mechanical stimuli, but the molecular basis for these responses is incompletely understood. The vertebrate transient receptor potential channel vanilloid subfamily 4 (TRPV4) (VR-OAC) cation channel has been suggested to be an osmo/mechanosensory channel. To assess its function in vivo, we expressed TRPV4 in Caenorhabditis elegans sensory neurons and examined its a...

متن کامل

Expression of the osmotically responsive cationic channel TRPV4 in the endolymphatic sac.

The immunohistochemical expression pattern and the physiological role of transient receptor potential vanilloid (TRPV) 4 in the endolymphatic sac were investigated. TRPV4 was expressed predominantly in the apical membrane of mitochondria-rich cells, and cell volume regulation by TRPV4 was observed in a tissue culture of the rat endolymphatic sac. TRPV4 was also present in the endolymphatic sacs...

متن کامل

The rat vanilloid receptor splice variant VR.5'sv blocks TRPV1 activation.

The capsaicin receptor (VR1, TRPV1) is a ligand-gated ion channel predominantly expressed in peripheral nociceptors and activated by multiple noxious stimuli including products of inflammation. A 5'-splice variant (VR.5'sv) of TRPV1 has been previously isolated and found to be insensitive to noxious stimuli. We report in this study that coexpression of VR.5'sv with TRPV1 in Xenopus oocytes bloc...

متن کامل

Capsazepine, a Transient Receptor Potential Vanilloid Type 1 (TRPV1) Antagonist, Attenuates Antinociceptive Effect of CB1 Receptor agonist, WIN55,212-2, in the Rat Nucleus Cuneiformis

Introduction: Nucleus cuneiformis (NCF), as part of descending pain inhibitory system, cooperates with periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) in supraspinal modulation of pain. Cannabinoids have analgesic effects in the PAG, RVM and NCF. The transient receptor potential vanilloid type 1(TRPV1) can be activated by anandamide and WIN55,212-2 as a cannabinoid receptor ago...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2000